Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.977
Filtrar
1.
Eur J Med Chem ; 270: 116376, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569433

RESUMO

A variety of novel indole-derived γ-hydroxy propiolate esters were designed, synthesized, and evaluated for their anti-inflammatory activity in-vitro and in-vivo. According to the nitric oxide (NO) inhibitory analysis, all compounds showed potent NO inhibitory ability in a dose-dependent manner, with no apparent cytotoxicity. The model compound, L-37, also exhibited significant potency in PGE2 inhibition. In addition, compounds L-37 and L-39 can downregulate the expression of COX-2 enzyme at 5 µM via ELISA experiment. Compound L-37 (1 µM) also inhibited the PGF1 production as well as the expression of COX-1, but displayed weak inhibition activity towards the Leukotrienes (LT) and Thromboxane-B2 (TXB-2) production. However, the expression of 5-LOX was significantly inhibited by compound L-39 at 5 µM. Xylene-induced ear edema model was explored for in-vivo anti-inflammatory evaluation, compound L-37 showed similar inhibitory activity compared with celecoxib, approximately 80% at 50 mg/kg dosage. Every outcome showed that the newly synthesized compounds can effectively inhibit inflammation.


Assuntos
Anti-Inflamatórios não Esteroides , Anti-Inflamatórios , Humanos , Anti-Inflamatórios/efeitos adversos , Celecoxib , Ciclo-Oxigenase 2/metabolismo , Indóis , Edema/induzido quimicamente , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Relação Estrutura-Atividade
2.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542198

RESUMO

Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.


Assuntos
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animais , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Caenorhabditis elegans/metabolismo , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Apoptose , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Linhagem Celular , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542530

RESUMO

A new ibuprofen derivative, (E)-2-(4-isobutylphenyl)-N'-(4-oxopentan-2-ylidene) propane hydrazide (IA), was synthesized, along with its metal complexes with Co, Cu, Ni, Gd, and Sm, to investigate their anti-inflammatory efficacy and COX-2 inhibition potential. Comprehensive characterization, including 1H NMR, MS, FTIR, UV-vis spectroscopy, and DFT analysis, were employed to determine the structural configurations, revealing unique motifs for Gd/Sm (capped square antiprismatic/tricapped trigonal prismatic) and Cu/Ni/Co (octahedral) complexes. Molecular docking with the COX-2 enzyme (PDB code: 5IKT) and pharmacokinetic assessments through SwissADME indicated that these compounds have superior binding energies and pharmacokinetic profiles, including BBB permeability and gastrointestinal absorption, compared to the traditional ibuprofen standalone. Their significantly lower IC50 values further suggest a higher efficacy as anti-inflammatory agents and COX-2 inhibitors. These research findings not only introduce promising ibuprofen derivatives for therapeutic applications but also set the stage for future validation and exploration of this new generation of ibuprofen compounds.


Assuntos
Anti-Inflamatórios , Ibuprofeno , Ibuprofeno/farmacologia , Ibuprofeno/química , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia
4.
J Mol Graph Model ; 129: 108747, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447296

RESUMO

Cyclooxygenases 1 and 2 (COX-1/2) are enzymes renowned for inducing inflammatory responses through the production of prostaglandins. Thus, the development of COX inhibitors has been a promising approach for identifying compounds with anti-inflammatory potential. In this study, we designed 27 new compounds (1-27) based on the structure of a previously known COX inhibitor, using the Ligand Designer tool. Our aim was to improve the affinity of the compounds with COX enzymes by inducing interactions with residue Arg120 while retaining the good π-π stacking interactions of the chromene-phenyl scaffold. Through screening based on ligand-binding free energy defined by molecular docking simulations and MM/GBSA technique, compounds 9 and 10 were identified as having the highest ability to inhibit COX proteins. The binding affinities of the two compounds with COX-1/2 were superior to those of the original NAI10 compound and the reference drug indomethacin. Our virtual screening suggests that compounds 9 and 10 have a strong ability to inhibit COX-1/2 and thus could be promising candidates for further anti-inflammatory drug studies. In essence, our study underscores the pivotal role of the N-aryl iminocoumarin scaffold in shaping the future landscape of novel anti-inflammatory drug development.


Assuntos
Anti-Inflamatórios , Inibidores de Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Ligantes , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química
5.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542945

RESUMO

COX-2 plays a key role in converting arachidonic acid into prostaglandins. This makes it a significant target for treating inflammation. Selective COX-2 inhibitors have marked a new phase in inflammatory treatment, providing significant effectiveness while reducing negative side effects. Herein, we aimed at the design and synthesis of new anti-inflammatory agents 5a-f, 7a-b, 10a-f, and 13a-b with expected selective inhibition for COX-2. Compounds 5d-f, 7b, and 10c-f showed significant COX-2 inhibition with IC50 in the range of 0.06-0.09 µM, indicating powerful pharmacological potential. In light of this, eight compounds were selected for further testing in vivo to assess their selectivity toward COX-1/COX-2 enzymes with the ability to reduce paw thickness. Compounds 5f and 7b showed significant anti-inflammatory effects without causing stomach ulcers, as they showed significant in vivo inhibition for paw thickness at 63.35% and 46.51%, as well as paw weight at 68.26% and 64.84%. Additionally, the tested compounds lowered TNF-α by 61.04% and 64.88%, as well as PGE-2 by 60.58% and 57.07%, respectively. Furthermore, these potent compounds were thoroughly analyzed for their pain-relieving effects, histological changes, and toxicological properties. Assessing renal and stomach function, as well as measuring liver enzymes AST and ALT, together with kidney indicators creatinine and urea, offered valuable information on their safety profiles. Molecular modeling studies explain the complex ways in which the strong interacts with the COX-2 enzyme. This comprehensive strategy emphasizes the therapeutic potential and safety profiling of these new analogues for managing inflammation.


Assuntos
Anti-Inflamatórios , Inibidores de Ciclo-Oxigenase 2 , Humanos , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Ácido Acético , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Edema/tratamento farmacológico , Relação Estrutura-Atividade , Desenho de Fármacos , Anti-Inflamatórios não Esteroides/farmacologia
6.
Food Funct ; 15(8): 4323-4337, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38530276

RESUMO

Microbial transformation is extensively utilized to generate new metabolites in bulk amounts with more specificity and improved activity. As cinnamic acid was reported to exhibit several important pharmacological properties, microbial transformation was used to obtain its new derivatives with enhanced biological activities. By manipulating the 2-stage fermentation protocol of biotransformation, five metabolites were produced from cinnamic acid. Two of them were new derivatives; N-propyl cinnamamide 2̲ and 2-methyl heptyl benzoate 3̲ produced by Alternaria alternata. The other 3 metabolites, p-hydroxy benzoic acid 4̲, cinnamyl alcohol 5̲ and methyl cinnamate 6̲, were produced by Rhodotorula rubra, Rhizopus species and Penicillium chrysogeneum, respectively. Cinnamic acid and its metabolites were evaluated for their cyclooxygenase (COX) and acetylcholinesterase (AChE) inhibitory activities. Protection against H2O2 and Aß1-42 induced-neurotoxicity in human neuroblastoma (SH-SY5Y) cells was also monitored. Metabolite 4̲ was more potent as a COX-2 inhibitor than the parent compound with an IC50 value of 1.85 ± 0.07 µM. Out of the tested compounds, only metabolite 2̲ showed AChE inhibitory activity with an IC50 value of 8.27 µM. These results were further correlated with an in silico study of the binding interactions of the active metabolites with the active sites of the studied enzymes. Metabolite 3̲ was more potent as a neuroprotective agent against H2O2 and Aß1-42 induced-neurotoxicity than catechin and epigallocatechin-3-gallate as positive controls. This study suggested the two new metabolites 2̲ and 3̲ along with metabolite 4̲ as potential leads for neurodegenerative diseases associated with cholinergic deficiency, neurotoxicity or neuroinflammation.


Assuntos
Biotransformação , Inibidores da Colinesterase , Cinamatos , Fármacos Neuroprotetores , Propanóis , Humanos , Cinamatos/farmacologia , Cinamatos/metabolismo , Cinamatos/química , Fármacos Neuroprotetores/farmacologia , Inibidores da Colinesterase/farmacologia , Linhagem Celular Tumoral , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Rhodotorula/metabolismo , Alternaria/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/metabolismo
7.
J Transl Med ; 22(1): 241, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443917

RESUMO

BACKGROUND: Tumor regression following immune checkpoint blockade (ICB) is often associated with immune-related adverse events (irAEs), marked by inflammation in non-cancerous tissues. This study was undertaken to investigate the functional relationship between anti-tumor and anti-self immunity, to facilitate irAE management while promoting anti-tumor immunity. METHODS: Multiple biopsies from tumor and inflamed tissues were collected from a patient with melanoma experiencing both tumor regression and irAEs on ICB, who underwent rapid autopsy. Immune cells infiltrating melanoma lesions and inflamed normal tissues were subjected to gene expression profiling with multiplex qRT-PCR for 122 candidate genes. Subsequently, immunohistochemistry was conducted to assess the expression of 14 candidate markers of immune cell subsets and checkpoints. TCR-beta sequencing was used to explore T cell clonal repertoires across specimens. RESULTS: While genes involved in MHC I/II antigen presentation, IFN signaling, innate immunity and immunosuppression were abundantly expressed across specimens, irAE tissues over-expressed certain genes associated with immunosuppression (CSF1R, IL10RA, IL27/EBI3, FOXP3, KLRG1, SOCS1, TGFB1), including those in the COX-2/PGE2 pathway (IL1B, PTGER1/EP1 and PTGER4/EP4). Immunohistochemistry revealed similar proportions of immunosuppressive cell subsets and checkpoint molecules across samples. TCRseq did not indicate common TCR repertoires across tumor and inflammation sites, arguing against shared antigen recognition between anti-tumor and anti-self immunity in this patient. CONCLUSIONS: This comprehensive study of a single patient with melanoma experiencing both tumor regression and irAEs on ICB explores the immune landscape across these tissues, revealing similarities between anti-tumor and anti-self immunity. Further, it highlights expression of the COX-2/PGE2 pathway, which is known to be immunosuppressive and potentially mediates ICB resistance. Ongoing clinical trials of COX-2/PGE2 pathway inhibitors targeting the major COX-2 inducer IL-1B, COX-2 itself, or the PGE2 receptors EP2 and EP4 present new opportunities to promote anti-tumor activity, but may also have the potential to enhance the severity of ICB-induced irAEs.


Assuntos
Antígenos de Grupos Sanguíneos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Checkpoint Imunológico , Ciclo-Oxigenase 2 , Dinoprostona , Inibidores de Ciclo-Oxigenase 2 , Inflamação , Receptores de Antígenos de Linfócitos T
8.
Int Wound J ; 21(3): e13946, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477426

RESUMO

Keloids seem to overexpress cyclo-oxygenase-2 (COX-2), suggesting a role in its deregulated pathway in inducing an altered epithelial-mesenchymal interaction, which may be responsible for the overgrowth of dermal components resulting in scars or keloid lesions. This study aimed to evaluate the effect of Parecoxib, a COX-2 inhibitor, on cell growth in fibroblast primary cultures obtained from human keloid tissues. Tissue explants were obtained from patients who underwent intralesional excision of untreated keloids; central fractions were isolated from keloid tissues and used for establishing distinct primary cultures. Appropriate aliquots of Parecoxib, a COX-2 inhibitor were diluted to obtain the concentration used in the experimental protocols in vitro (1, 10 or 100 µM). Treatment with Parecoxib (at all concentrations) caused a significant decrease in cellular growth from 24 hours onwards, and with a maximum at 72 hours (P < .02). Moreover, at 72 hours Parecoxib significantly reduced cellular vitality. Parecoxib treatment also induced an increase in fragmented nuclei with a maximum effect at 100 µM and a significant decrease in Bcl-2 and an increase in activated caspase-3 protein levels at 72 hours compared with control untreated cultures. Our findings suggest a potential use of the COX-2 inhibitor, Parecoxib, as the therapy for keloids.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Queloide/patologia , Inibidores de Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Isoxazóis/metabolismo , Isoxazóis/farmacologia , Fibroblastos , Cicatriz Hipertrófica/metabolismo
9.
Bioorg Chem ; 145: 107244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428284

RESUMO

Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 µM) compared to meclofenamate sodium (IC50 = 3.837 µM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 µM, SI = 8.95), 5h(IC50 = 0.234 µM, SI = 20.35) and 5l (IC50 = 0.201 µM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 µM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Quinolinas , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Celecoxib/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura Molecular
11.
Int J Pharm ; 653: 123897, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360289

RESUMO

Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.


Assuntos
Neoplasias da Mama , Doxorrubicina/análogos & derivados , Humanos , Camundongos , Animais , Feminino , Celecoxib , Neoplasias da Mama/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/farmacologia
12.
Int. j. morphol ; 42(1): 40-45, feb. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1528826

RESUMO

SUMMARY: Angiogenesis, a process by which new blood vessels are generated from pre-existing ones, is significantly compromised in tumor development, given that due to the nutritional need of tumor cells, pro-angiogenic signals will be generated to promote this process and thus receive the oxygen and nutrients necessary for its development, in addition to being a key escape route for tumor spread. Although there is currently an increase in the number of studies of various anti-angiogenic therapies that help reduce tumor progression, it is necessary to conduct a review of existing studies of therapeutic alternatives to demonstrate their importance.


La angiogénesis, proceso por el cual se generan nuevos vasos sanguíneos a partir de otros preexistentes, se encuentra comprometida de forma importante en el desarrollo tumoral, dado que por necesidad nutritiva de las células tumorales se generarán señales pro angiogénicas para promover este proceso y así recibir el oxígeno y los nutrientes necesarios para su desarrollo, además de ser una ruta de escape clave para la diseminación tumoral. Si bien, actualmente existe un aumento en la cantidad de estudios de diversas terapias anti angiogénicas que ayudan a reducir el avance tumoral, es necesario realizar una revisión de los estudios existentes de alternativas terapéuticas para demostrar su importancia.


Assuntos
Humanos , Inibidores da Angiogênese/uso terapêutico , Celecoxib/uso terapêutico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase 2 , Neoplasias/patologia , Antineoplásicos/uso terapêutico
13.
Bioorg Med Chem Lett ; 100: 129631, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307442

RESUMO

Chronic pain is a serious problem that affects billions of people worldwide, but current analgesic drugs limit their use in chronic pain management due to their respective side effects. As a first-line clinical drug for chronic pain, COX-2 selective inhibitors can relieve mild to moderate pain, but they also have some problems. The most prominent one is that their analgesic intensity is not enough, and they cannot well meet the treatment needs of chronic pain. Therefore, there is an urgent need to develop COX-2 inhibitors with stronger analgesic intensity. In this article, we used virtual screening method to screen out the structurally novel COX-2 inhibitor for chronic pain management, and conducted a preliminary study on its mechanism of action using molecular dynamics simulation.


Assuntos
Dor Crônica , Inibidores de Ciclo-Oxigenase 2 , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Dor Crônica/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Furanos
14.
Bioorg Chem ; 145: 107209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368656

RESUMO

Marine natural products continue to hold great promise as potential candidates for the discovery of anti-inflammatory drug. In our previous investigation, we successfully synthesized axinelline A, a naturally occurring cyclooxygenase-2 (COX-2) inhibitor, as a promising anti-inflammatory lead compound. This study was to discover novel COX inhibitors with balanced inhibition, aiming to mitigate the severe adverse effects through further structural modification of axinelline A. Of the synthetic derivatives, compound 5e showed highest COX-2 inhibitory activity and balanced COX inhibition (IC50 = 1.74 µM; selectivity ((IC50 (COX-1)/IC50(COX-2) = 16.32). The in vitro anti-inflammatory results indicated that 5e effectively suppressed the expression of pro-inflammatory mediators via the NF-κB signaling pathway rather than the MAPK signaling pathway. The in vivo ulcerative colitis assay demonstrated 5e significantly ameliorated the histological damages and showed strong protection against DSS-induced acute colitis. Therefore, our findings suggest that compound 5e exhibits potential as a promising anti-inflammatory agent with attenuated colitis-related adverse effects.


Assuntos
Catecóis , Colite , Humanos , Ciclo-Oxigenase 2/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , NF-kappa B/metabolismo , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia
15.
Comput Biol Med ; 171: 108164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412690

RESUMO

Inflammation plays a pivotal role in various pathological processes, ranging from routine injuries and infections to cancer. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are two major enzymes involved in the formation of lipid mediators of inflammation, such as prostaglandins and leukotrienes, through the arachidonic acid pathway. Despite the frequent use of nonsteroidal anti-inflammatory drugs for managing inflammatory disorders by inhibiting these enzymes, there is a wide spectrum of adverse effects linked to their usage. Jeevaneeya Rasayana (JR), a polyherbal formulation traditionally used in India, is renowned for its anti-inflammatory properties. The present study aimed to identify the potential phytocompounds in JR plants against COX-2 and 5-LOX, utilizing molecular docking and dynamic simulations. Among the 429 identified phytocompounds retrieved from publicly available data sources, Terrestribisamide and 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine have shown potential binding affinity and favorable interactions with COX-2 and 5-LOX arachidonic acid binding sites. The physicochemical properties and ADMET profiles of these compounds determined their drug-likeness and pharmacokinetics features. Additional validation using molecular dynamics simulations, SASA, Rg, and MM-PBSA binding energy calculations affirmed the stability of the complex formed between those compounds with target proteins. Together, the study identified the effectual binding potential of those bioactive compounds against COX-2 and 5-LOX, providing a viable approach for the development of effective anti-inflammatory medications.


Assuntos
Anti-Inflamatórios , Inflamação , Extratos Vegetais , Humanos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/uso terapêutico , Simulação de Acoplamento Molecular , Ácido Araquidônico/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/uso terapêutico
16.
Chem Biol Drug Des ; 103(1): e14437, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230782

RESUMO

The adverse effects caused by nonselective and selective cyclooxygenase-2 (COX-2) inhibitors remain a challenge for current anti-inflammatory medications. A balanced inhibition of COX-1/-2 represents a promising strategy for the development of novel COX-2 inhibitors. In this study, we present the design and synthesis of a novel series of firocoxib analogues incorporating an amide bond to facilitate essential hydrogen bonding with amino residues in COX-2. The synthesized analogs were evaluated for their inhibitory activity against both COX-1 and COX-2 enzymes. Among them, compound 9d demonstrated potent and balanced inhibition. Inhibition of COX enzymes by 9d in lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages resulted in the suppression of the NF-κB signaling pathway to reduced expression of pro-inflammatory factors such as inducible nitric oxide synthase (iNOS), COX-2, nitric oxide (NO), and reactive oxygen species (ROS). The remarkable in vitro anti-inflammatory activity exhibited by 9d positions it as a promising candidate for further development as a novel lead compound for inflammation treatment.


Assuntos
4-Butirolactona/análogos & derivados , Anti-Inflamatórios , Sulfonas , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óxido Nítrico Sintase Tipo II/metabolismo , Sulfonas/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo
17.
J Drug Target ; 32(3): 258-269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38252517

RESUMO

Triple-negative breast cancer (TNBC) lacks the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), rendering it unresponsive to endocrine therapy and HER2 targeted treatments. Though certain chemotherapeutics targeting the cell cycle have shown efficacy to a certain extent, the presence of chemotherapy-resistant cancer stem cells (CSCs) presents a significant challenge in tackling TNBC. Multiple lines of evidence suggest the upregulation of neuropeptide Substance P (SP), its NK-1 receptor (NK1R) and the Cyclooxygenase-2 (COX-2) enzyme in TNBC patients. Upregulation of the SP/NK1R system and COX-2 influences major signalling pathways involved in cell proliferation, growth, survival, angiogenesis, inflammation, metastasis and stem cell activity. The simultaneous activation and crosstalk between the pathways activated by SP/NK1R and COX-2 consequently increase the levels of key regulators of self-renewal pathways in CSCs, promoting stemness. The combination therapy with NK1R antagonists and COX-2 inhibitors can simultaneously target TNBC cells and CSCs, thereby enhancing treatment efficacy and reducing the risk of recurrence and relapse. This review discusses the rationale for combining NK1R antagonists and COX-2 inhibitors for the better management of TNBC and a novel strategy to deliver drug cargo precisely to the tumour site to address the challenges associated with off-target binding.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2 , Transdução de Sinais , Receptores de Estrogênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
18.
Brain Res Bull ; 207: 110871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211740

RESUMO

CONTEXT: Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has been shown to exhibit anti-depressive effects in clinical trials. However, the direct mechanism underlying its effect on neuroinflammation remains unclear. Neuroinflammatory reaction from astrocytes leads to depression, and our previous study found that gap junction disorder between astrocytes aggravated neuroinflammatory reaction in depressed mice. OBJECTIVE: To investigate the potential mechanism of celecoxib's effects on astrocytic gap junctions during the central nervous inflammation-induced depression. MATERIALS & METHODS: Stereotaxic injection of lipopolysaccharide (LPS) into the prefrontal cortex (PFC) to establish a model of major depressive disorder (MDD). Celecoxib was administrated into PFC 15 min after LPS injection. The depressive performance was tested by tail suspension test and forced swimming test, and the levels of proinflammation cytokines were determined at mRNA and protein levels. Resting-state functional connection (rsFC) was employed to assess changes in the default mode network (DMN). Additionally, astrocytic gap junctions were also determined by lucifer yellow (LY) diffusion and transmission electron microscope (TEM), and the expression of connexin 43 (Cx43) was measured by western blotting, quantitative polymerase chain reaction, and immunofluorescence. RESULTS: LPS injection induced significant depressive performance, which was ameliorated by celecoxib treatment. Celecoxib also improved rsFC in the DMN. Furthermore, celecoxib improved astrocytic gap junctions as evidenced by increased LY diffusion, shortened gap junction width, and normalized levels of phosphorylated Cx43. Celecoxib also blocked the phosphorylation of p65, and inhibition of p65 abolished the improvement of Cx43. DISCUSSION & CONCLUSION: Anti-depressive effects of celecoxib are mediated, at least in part, by the inhibition of nuclear factor- kappa B (NF-κB) and the subsequent improvement of astrocytic gap junction function.


Assuntos
Transtorno Depressivo Maior , NF-kappa B , Animais , Camundongos , Celecoxib/farmacologia , NF-kappa B/metabolismo , Conexina 43/metabolismo , Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Lipopolissacarídeos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Junções Comunicantes
19.
Eur J Med Chem ; 267: 116176, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286094

RESUMO

A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 µΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.


Assuntos
Artrite Reumatoide , Cetoprofeno , Ratos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2 , Lipopolissacarídeos/farmacologia , Artrite Reumatoide/tratamento farmacológico , NF-kappa B/metabolismo
20.
Mol Oncol ; 18(4): 1012-1030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217262

RESUMO

Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1ß and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.


Assuntos
60532 , Hipertermia Induzida , Melanoma , Pirazóis , Neoplasias de Mama Triplo Negativas , Humanos , Melanoma/tratamento farmacológico , Ciclo-Oxigenase 2 , Neoplasias de Mama Triplo Negativas/terapia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...